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1. INTRODUCTION 
This appendix presents standards and guidelines for electrical design calculations for SPU 
projects.  

Design calculations establish minimum guidelines and requirements for generating electrical 
calculations on projects. Electrical calculations should be made for all SPU projects that include 
electrical components and should be filed in the project notebook. Design calculations may be 
made either manually or by SPU-approved computer programs. At a minimum, the following 
types of calculations should be made where applicable: 

• Load calculations 
• Conductor sizing 
• Conduit sizing 
• Motor branch circuit sizing 
• Power factor improvement 
• Transformer primary and secondary circuit sizing 
• Voltage drop 
• Motor starting voltage dip 
• Short circuit analysis 
• Lighting levels 
• Grounding in substations where step potentials are of concern 
• Harmonic distortion analysis 
• Cable pulling calculations 
• Generator capability/motor starting 

2. SOFTWARE 
The electrical design engineer must use only SPU-approved electrical analysis software. The 
results should be validated with a hand calculation or order of magnitude estimate. Some SPU-
approved software tools are: 

• ETAP Integrated AC & DC Design & Analysis software. It includes a basic design tool with 
system modeling, protection and coordination calculation, and Arc Flash Analysis. 

• Cummins Power Suite for sizing emergency generators 
• CenterONE available from Rockwell Automation for laying out motor control centers  

Spreadsheets may also be used to perform basic electrical load calculations with programs such 
as Microsoft EXCEL.  

http://www.cumminspower.com/en/technical/powersuite/webcenter/
http://www.rockwellautomation.com/en/e-tools/configuration.html


Chapter 9 Electrical Design 
Appendix 9C Design Calculations for Electrical Design 

2 SPU Design Standards and Guidelines  February 2024 

 

3. CALCULATION MATRIX 
Project calculations serve as formal documentation of the project electrical design. They must 
contain sufficient description and detail to communicate the design concept, assumptions, and 
judgments associated with the design. Explanatory comments should be provided to assist 
reviewers and engineers who may use the calculations in the future.  

Table 9C-1 describes electrical calculation required for projects, tools to do the calculations, who 
is responsible for the calculations, and when they should be done. 

Table 9C-1 
Calculations for Electrical Design 

Calculation Description Required Tools1 
Req’d 
All 

Req’d 
Cond2 

By 
Engr3 

By 
Cntr3 

Design 
Phase (%) 

Load - 
facility, 
switchgear, 
MCC 

Load at each load center per 
NEC to determine bus, 
protective device & circuit 
size 

ETAP Load flow 
Analysis 
Spreadsheets, 
hand calcs 

X  X  30/ 60/90 

Load - 
panelboard 

Load on each panelboard per 
NEC to determine panel, 
circuit, and transformer size 

ETAP Load Flow 
Analysis 
spreadsheets 

X  X  60 and 90 

Generator 
sizing 

To size engine generator 
based on critical run and 
start loads. 

Cat, Kohler, 
Cummins, or 
other vendor 
software 

X  X  30/ 60/90 

Short Circuit Available fault current at each 
bus to determine equipment 
short circuit/interrupting 
ratings 

ETAP Shot 
Circuit, 
Hand Calculation 

X  X X 30/60/90 

Lighting To determine fixtures 
needed given desired light 
level; also energy calculations 
(where req’d) 

AGI 32, Vendor, 
spreadsheets 

X  X  60 and 90 

Conductor 
sizing 

To size conductors per NEC Tables, hand calcs X  X  60 and 90 

Circuit 
breaker and 
fuse sizing 

To size circuit breakers and 
fuses per NEC 

Tables, hand calcs X  X  60 and 90 

Conduit 
Fill/Tray Size 

To size conduit and cable 
tray per NEC 

NEC Tables, 
Cablematic Plus 

X  X  60 and 90 

Voltage drop For heavily loaded and/or 
long circuits to confirm 
operation within NEC 
recommendations (min) 

ETAP 
spreadsheets, 
hand calcs 

 X X  60 and 90 

Transient 
Motor 
Starting 

For starting large motors 
(largest motor at each load 
center) to determine if 
voltage drop on motor 
starting is magnitude to 
adversely impact other 
system equipment (e.g. 20% 
voltage dip could make 
control relays drop out. Many 

ETAP, hand calcs  X    
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Calculation Description Required Tools1 
Req’d 
All 

Req’d 
Cond2 

By 
Engr3 

By 
Cntr3 

Design 
Phase (%) 

are only designed to operate 
15% below rated voltage.) 

Harmonic 
Distortion 
Analysis 

To confirm operation within 
IEEE 519 requirements (min) 
for non-linear loads 

ETAP Harmonic 
HI_WAVE, GE or 
other vendor 
software 

 X X X 30/60/90 

Multiple 
circuit 
derating 

For more than 3 current 
carrying conductors in a 
conduit per NEC 

NEC Tables, 
Cablematic Plus 

 X X  60 and 90 

Ambient 
temperature 
circuit 
derating 

For higher than "normal" 
ambient temperatures--could 
include heat from multiple 
circuits in duct bank 

AMP CALC, NEC 
tables 

 X X  60 and 90 

Protective 
device 
coordination 

To minimize outages to 
smallest portion of system 
possible 

ETAP CAPTOR  X X X 90 

Cable Pulling To assure no damage to cable 
when pulled in conduit given 
conduit size, distance and 
bends. Rq’d for medium-
voltage & some large/long 
low-voltage 

Polywater or other 
vendor software 

 X X X 60, 90 dsgn 
check; 
 by cntrctr 
in Constr 
before 
pulling 

Arc-flash To label gear regarding arc-
flash hazard and PPE 
required. NEC requires label, 
not calcs. Reference NFPA 
70E and IEEE 1584. 

ETAP Arc Flash 
Evaluation 

 X  X 90 

Power factor 
correction 

To size capacitors for single 
motor or systems. 

  X X  60 and 90 

Battery/UPS 
sizing 

To determine amp-hour 
based on load and duration. 

  X X X 90, Constr 

Transformer 
K-factor 

To determine appropriate K-
factor for transformers with 
non-linear loads 

  X X X 90, Constr 

VFD 
reflective 
wave 

For motor distant from VFD   X X X 90, Constr 

Lightning 
Protection 
Strike 
Distance 

May be performance specified per NFPA 780  X X X 60 and 90 

Notes 
1 Suggested tools for use in SPU projects. 
2 Responsible party. Contractor-provided calculations may require design engineer-provided criteria. 
3 Required conditionally: Required when applicable 
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4. BASIC REQUIREMENTS FOR 
ELECTRICAL CALCULATIONS 

The following are SPU basic requirements for electrical calculations: 

1. Non-computer generated calculations must be on standard calculations sheets with the 
heading completely filled out. 

2. Calculations generated by computer programs must conform with the following 
procedures: 

a. Include all heading information on each sheet  

b. Insert comments wherever possibly to clarify concepts and actions taken in the 
computer input 

c. Provide clear documentation of electrical geometry, support conditions, load 
application, and load requirements 

d. Where practical, provide sketch of model indicting nodes, materials, connectivity, 
etc. 

e. Provide electronic copy on CD or other suitable device of analysis input and output 
with hard copy calculations. 

f. Provide manual checks of pertinent results (e.g. service size, main feeder voltage 
drop) for computer generated output. 

5. BASIC ELECTRICAL ENGINEERING 
FORMULAS 

This section describes basic electrical engineering formulas for creating design calculations. 

5.1 LIST OF SYMBOLS 
V  - Voltage (volts) 

I  - Current (amps) 

R  - Resistance (ohms) 

X  - Reactance (ohms) 

Z  - Impedance (ohms) 

W  Real Power (watts) 

θ  - Phase angle whose cosine is the power factor 

eff  - Efficiency 
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5.2 DIRECT CURRENT (DC) FORMULAS 
Basic Formulas 

Volts  V = I x R 

Power in watts  
P V I

P I R

= ×

= ×2
 

5.3 ALTERNATING CURRENT (AC) SINGLE 
PHASE 

V denotes line to neutral voltage. 

Basic Formulas 

Volts V I Z= ×  

Power Factor  θcos = pf  

Apparent Power          =    

Reactive Power          =      

VA V x I

VARS V x I x sinθ
 

Real Power W = V x I x pf 

Phase Angle θ = arctan(W/VARS) 

Power Factor pf = W/(V x I) = W/VA 

Voltage Drop ( )Vd I R I X= × × × + × ×2 cos sinθ θ  

where: 

Vd  =  voltage drop in circuit 

sinθ  =  load reactive factor 

X  = reactance 

5.4 ALTERNATING CURRENT (AC), 
THREE-PHASE 

V denotes line to line voltage. 

Basic Formulas 

Apparent Power =kVA ( )3×× IV   

   22 kVARkWkVA +=  
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Real Power  θcos×= kVAkW  

Reactive Power   kVAR kVA= × sinθ  

Phase Angle  θ = 





arctan kW
kVAR

 

Power Factor  
kVA
kWpf == θcos  

Voltage Drop   ( )Vd I R I X= × × × + × ×3 cos sinθ θ  

where: 

Vd  =  voltage drop in circuit 

sinθ  =  load reactive factor 

X  = reactance 

5.5 MOTORS 
1 horsepower (hp) = 746 watts. 

Note: Motor hp rating relates to motor mechanical output. To determine motor input kVA 
requirements, the motor efficiency and power factor must be accounted for. In general, for preliminary 
or rough load calculations, assume: 

1 kVA of electrical input power for 1 hp of motor.  

Example 9C-1 
Motors 

Condition: A motor control center with a total connected horsepower of 337 hp can be assumed to 
require 337 kVA of input power. This is a conservative value, particularly for larger motors. 

Torque  = (hp x 5250)/revolutions per minute (rpm) 

Fan hp  = (cubic feet per minute [cfm] x pressure)/(33000 x eff) 

Pump hp = (gallons per minute [gpm] x head x specific gravity)/(3960 x eff) 

Motors (Single Phase) 

hp = (V x I x eff x pf)/746 

Motors (3 phase) 

Synchronous Speed: ns = (120)(Frequency)/(# of Poles) 

( )
746
3 pfeffIVhp ××××

=  
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5.6 POWER FACTOR CORRECTION 
The size of the capacitor needed to increase the power factor from pf1 to pf2 with the initial 
kVA given is: 

kVAR kVA pf pf pf pf= × − − −





1 1
2

1 2 1 2
2/  

6. SAMPLE CALCULATIONS 
This section presents sample calculations for electrical design. 

6.1 LOAD 
Load calculations should be made using applicable sections of National Electrical Code (NEC) 
Articles 220, 430, and other sections of the NEC. The following load calculations should generally 
be used for sizing: 

• Feeder conductors and protective devices 
• Transformers 
• Panelboard and switchboard main busses  
• Motor control center components  
• Service entrance devices and conductors 

Load calculations must include all loads. They should be made by summing all of the loads (using 
appropriate diversity factors allowed by NEC Article 220) that are connected to each 
panelboard, switchboard, and motor control center. An allowance must be made for future load 
growth. The loads for each branch of the distribution system can then be summed back to the 
service entrance equipment. 

6.2 GENERATOR SIZING 
The following information is intended to familiarize the design engineer with terms used by 
generator sizing software and underlying formulas.  

Generator single or multi-sets must be sized to supply maximum starting (SkVA), stead-state 
running (RkVA) and non-linear (GkW) demands of connected and future electrical equipment.  

Information critical to the sizing and selection of generator single or multi-sets include:  

• Environmental conditions: elevation, temperature, indoor or outdoor 
• Noise abatement requirements: mufflers, enclosure, silent models  
• Fuel: diesel, gasoline, natural gas 
• Fuel storage: skid mounted tank, day and remote tanks 
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• Cooling: liquid cooled radiator, forced air  
• Voltage regulation: maximum allowable voltage dips  
• Operation: prime, standby  
• Voltage ratings: voltage,3-phase, 1-phase, solid grounded, delta, wye 
• Connected loads: Linear, non-linear, power factor 
• Load operation: Motor starting methods, single step, single step with diversity, multiple 

steps of loading 
• Future loads 

6.2.1 Sizing Procedures for Generator Single or 
Multi-sets 

The following is the sizing procedure for generator single or multi-sets: 

1. Prepare a load schedule. 

2. Enter individual load characteristics in software. 

3. Enter loads in step sequence in software.  

4. Have software calculate and select a generator set. It is a good practice to request a 
verifying calculation from the preferred genset manufacturer.  

6.2.2 Definitions: Generator Sizing 
eff = Efficiency 

FLA = Full Load Amps 

GkW = Non-linear kW of connected load(s) 

LRA = Locked Rollor Amps 

Rpf = Running Power Factor of connected loads(s) 

RkVA = Running kVA of connected load(s) 

RkW = Running kW of connected load(s) 

Rpf = Running power factor of connected load(s) 

Rmsf= Reduced motor starting factor  

SkVA = Starting kVA of connected load(s)  

SkW = Starting kW of connected load(s) 

Spf = Starting power factor of connected load(s) 

6.2.3 Underlying Equations  
1. Resistive Loads : RkWSkWRkVASkVA ===   
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2. Lighting Loads (except for HID): 
Spf
SkWSkVA =  

Rpf
RkWRkVA =  

3.  HID Lighting Loads:  RkVASkVA ×= 75.0   

RkWSkW ×= 75.0  

4. Motor Loads: 
)1000(

746)(
××

×
×−−=

Spfeff
hpMultiplierCodeNEMASkVA  

5. Motor Loads (3-phase): 
1000

3
××= −llVLRASkVA  

)1000(
746

×
×

=
eff
hpRkW  

6. VFD:  
)1000(

746)(_(
×

×
=

eff
hpNameplateDriveRkW  

)1000(
746)(_(

××
×

=
pfeff

hpNameplateDriveRkVA  

eff
kVANameplateDriveSkVA ))(_(

=  

7. VFD: RkWGkW ×= 0.2   

Note: This assumes a generator sizing factor of 2 unless otherwise known. Review 
information on UPS as well.  

8. UPS: 
)(

))(arg)(_(
eff

kWingBatteryChkWNameplateUPSSkW +
=  

eff
kWingBatteryChkWNameplateUPSRkW ))(arg)(_( +

=  

9. UPS:  RkWpulseGkW ×= 50.2)3(  

RkWpulseGkW ×= 40.1)6(  

RkWpulseGkW ×= 15.1)12(  

10. Reduced Voltage Motor Starting: RmsfSkVASkVA ×=  
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6.3 CONDUCTOR SIZE, GENERAL 
Conductor sizes must be determined in compliance with the specific NEC articles noted below, 
and with due consideration of other factors, such as terminal ratings and voltage drop as shown 
on Table 9C-2. 

Table 9C-2 
NEC References for Conductor Sizing 

General Purpose Branch Circuits and Feeders Article 220 

Service Entrance Conductors Article 230 

Motor Circuits Article 430 

Air Conditioning Equipment Article 440 

Generators Article 445 

Transformer (Primary and Secondary) Article 450 

Capacitor Circuits Article 460 

In this section, we will look at the general requirements for sizing conductors once the 
calculated load current is known. This is a two-step process: 

1. The first step is to look at the temperature rating of the terminals and the ampacity of 
the conductor that could be used at a matching temperature rating.  

2. The second step is to look at the effect of ambient temperature and conductor derating 
factors on the ampacity of the conductor that results from where and how the 
conductors are installed. 

Insulation used to cover electrical wiring conductors is rated for the maximum temperature it 
can withstand on a continuous basis. Standard ratings are 60°, 75°, 90°, and 105°C. The current-
carrying capability of a conductor is a function of: 

• Cross-section of the conductor 
• Insulation temperature rating 
• Ambient temperature 

The ampacity of a conductor of any size is increased as the rating of its insulation is increased. 
As the ambient temperature is increased, the ampacity of the conductor must be derated from 
its ampacity at 30°C. A No. 6 copper conductor with 90°C insulation will be rated for a higher 
continuous current than a No. 6 copper conductor with 60°C insulation. Because the 
Underwriters Laboratories, Inc. (UL) places certain restrictions on the size and temperature 
rating of conductor that can be used at its terminals, conductor size needs to be carefully 
determined. 

The UL tests for switchboards, panelboard, motor starters, and other equipment are made with 
wiring terminated on the equipment. The equipment is designed to take into account the heat 
transfer provided by these load-side conductors. If the conductor connected to a circuit breaker 
is smaller than the tested configuration, it will conduct less heat away from the circuit breaker. 
This will cause its thermal elements to operate at a lower temperature than with a larger 
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conductor, even though the smaller conductor may be adequate based on the NEC tables for 
wire size at its insulation rating. For this reason, the UL listing for circuit breakers, and many 
other types of equipment, is based on standard-size conductors. These standard sizes, in turn, 
are based on the NEC ampacity for a particular insulation temperature rating. UL uses the 
following basic rule for circuit breakers: 

• Circuit breakers through 125A:   Use 60°C insulation ampacity 
• Circuits breakers 150A and above:  Use 75°C insulation ampacity 

Higher rated insulations may be used, but the conductors must be sized based on the lower 
rated insulation. Of course, these are minimums, and larger wire may be used. Although this is 
the basic rule, there are exceptions. Equipment where all terminations are rated for use with 
75°C wire has become widely available, and this is what we typically ask for in our specifications 
for all electrical equipment down through 120V panelboards. However, this is not universal, and 
we must make sure that our wiring is sized appropriately. If you size all smaller circuits (through 
125A) based on 60°C wire, you will stay out of trouble. 

Paragraphs 210-19 and 215-2 of the NEC require that branch circuit and feeder conductors have 
an ampacity not less than the load to be served. NEC Paragraph 210-22 contains additional 
information relative to branch circuit loads. Once branch circuit and feeder loads have been 
determined using applicable sections of NEC Article 230 and other applicable articles, conductor 
sizes should then be determined using Tables 310-16 through 310-31 of the NEC. The four 
examples presented below are based on the ampacities presented in NEC Table 310-16, as 
modified by the applicable correction factors for temperature and conduit fill. 

Example 9C-2 
Conductor Size No. 1  

Conditions: Continuous load rated 43A served by a conduit containing only the conductors for the 
load, running through a wet area that could have an ambient temperature as high as 42°C. Conductors 
are to be copper with type THHN/THWN insulation. 

Required ampacity per NEC paragraphs 210-16 and 210-22: 

• Ampacity required = continuous load x 125% or 53.75 amps 

A No. 6 AWG copper conductor having an ampacity of 55 amps (with 60°C insulation) would be 
the correct choice at the terminals of the circuit breaker serving the load. Note, however, that 
NEC Table 310-16 applies only up to a maximum ambient temperature of 30°C.  

Where the ambient temperature exceeds the 30°C ambient temperature on which Table 310-16 
is based, the allowable ampacity of the conductor must be corrected using the correction 
factors at the bottom of Table 310-16, as required by NEC paragraph 310-10. 

• Ampacity of No. 6 conductor (THHN/THWN wet, 75°C column) = 65 amps 
• Corrected ampacity = 65 x correction factor (.82) = 65 x .82 = 53.3 amps 

Because 53.75 amps is required, this conductor is not adequate. The next larger size conductor 
will need to be used even though its ampacity was sufficient at the circuit breaker. 

If the circuit were being installed where the conductors would never be wet or where 
conductors with insulation suitable for wet application at 90°C were being used, the 90°C 
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column ampacity of the conductor could be used for determining the corrected ampacity of the 
conductor in the conduit. 

• Ampacity of No. 6 conductor (THHN/THWN DRY, or THWN-2 or XHHW-2 wet, 90°C 
column) = 75 amps 

• Corrected ampacity = 75 x correction factor (.87) = 75 x .87 = 65.2 amps 

The No. 6 conductor would be adequate for this installation and could be protected by a 60-amp 
circuit breaker even though its 60°C rating is only 55 amps. The 60-amp circuit breaker would be 
allowed by paragraph 240-3, which allows a conductor to be protected by the next larger size 
overcurrent device if the size of the device is 800 amps or less. 

Example 9C-3 
Conductor Size No. 2 

Conditions: The same load and ambient conditions as above, but with 6-phase conductors in the same 
conduit. We already know that the No. 6 conductors are adequate at the terminals and that they would 
not be adequate if the circuit were wet—unless the conductor insulation were rated 90°C, wet. Assume 
the conductors to be No. 6 THWN-2 insulation. 

• Corrected ampacity = 75 x correction factor (.87) = 75 x .87 = 65.2 amps 
• (Ampacity from 90°C column, corrected for temperature) 

Where more than three current-carrying conductors are contained in the same raceway, the 
ampacity of the conductors must also be derated by the ampacity adjustment factor contained 
in Note 8 of NEC Tables 310-16 through 310-19. 

• Corrected ampacity of six No. 6 conductors = 65.2 x .8 = 52.2 amps 

Because 53.75 amps is required, this conductor is not adequate and the next larger size 
conductor will need to be used, even though its ampacity was sufficient at the circuit breaker. 

If the ambient temperature were reduced to below 40°C, the temperature correction factor 
would be increased to .91, resulting in an increase in the conductor ampacity. 

• Corrected ampacity = 75 x .91 (temp. correction) x .8 (six conductors) = 54.6 amps 

Again, the No. 6 THWN-2 conductor would be adequate for this installation and could be 
protected by a 60-amp circuit breaker even though its 60°C rating is only 55 amps. 

Example 9C-4 
Conductor Size No. 3 

Conditions: A feeder with 200A of noncontinuous load and 65A of continuous load to be installed in 
conduit in a wet area with an ambient temperature of 30°C or less. 

• Required ampacity per NEC paragraph 220-10 = noncontinuous load + 1.25 x continuous 
load  

• Or 200 + 1.25 x 65 = 281.25 amps 

The feeder overcurrent device would be sized at 300A because that is the next larger standard 
rating (see Article 240 of the NEC). 
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The conductor ampacity requirement can be met by either one 300-kCM conductor or two 1/0 
conductors with THHN/THWN or XHHW insulation per phase.  

Example 9C-5 
Conductor Size No. 3 

Conditions: The same load as used in example No. 3, but the conduit is to be installed in a dry area 
with an ambient temperature of 38°C. 

• Required ampacity calculated above = 281.25 amps. 
• Ampacity of one 300-kCM THHN/THWN or XHHW conductor is 320 amps in a dry 

location. 
• Correction factor for 90°C conductors in a 38°C ambient temperature = 0.91. 
• Corrected ampacity = 320 amps x 0.91 = 291. 

If the conductors were being installed in a wet location, the ampacity from the 75°C column 
would have to be used (refer to Table 310-13 for operating temperature), and the results would 
be different—unless conductors with insulation rated 90°C, wet, such as THWN-2 or XHHW-2, 
are used. Note that, at the terminals, the ampacity of the conductors must be based on the 
temperature rating of the terminals (either 60°C or 75°C); therefore, if the terminals are in a 
high-ambient-temperature area, this procedure must be modified. 

6.4 CONDUIT SIZE AND FILL 
Where conductors are installed in conduit, the conduit should be sized in accordance with 
Tables 1 through 5A in Chapter 9 and Appendix C of the NEC, and all associated notes. Following 
are two examples of how conduits can be sized under different circumstances. 

Example 9C-6 
Conduit Size and Fill No. 1 

Conditions: Three 4/0 AWG conductors with XHHW insulation installed in rigid steel conduit (no 
separate ground conductor). 

See NEC Table C8 for conduit size required for three 4/0 AWG conductors with XHHW insulation. 

The table would allow only two conductors to be installed in a 1-1/2-inch conduit and four to be 
installed in a 2-inch conduit; therefore, a 2-inch conduit is the correct choice. 

Example 9C-7 
Conduit Size and Fill No. 2 

Conditions: Three No. 4/0 phase conductors, one No. 1/0 neutral and one No. 2 equipment ground 
conductor to be installed in rigid metal conduit. Phase and neutral conductor insulation will be XHHW 
and the ground conductor will have TW insulation. 

Because the tables in Appendix C of NEC are for situations where all conductors in a conduit are 
the same size, they cannot be used for this example. NEC Table 4, using appropriate conductor 
areas from NEC Table 5, must then be used. 
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Table 9C-3 
Total conductor area 

Conductor size Area 
4/0 XHHW 0.3197 

1/0 XHHW 0.1825 

# 2 TW 0.1333 

Total Area = 3(.3197) + .1825 + .1333 = 1.275 square inches 

Conduit size required: 

Because more than two conductors that are not lead covered are being installed, the column for 
40 % fill in NEC Table 4 can be used. 

Select conduit with a usable area greater than 1.275 square inches; therefore, conduit size = 
2 inch (40% of total area = 1.363 square inches). 

Caution: Both Schedule 40 and Schedule 80 PVC have a smaller inside diameter than rigid metal 
conduit and thus will have a smaller total area. EMT also has a smaller inside diameter in the 
smaller sizes (2-inch and less). Conduits must be based on the conduit type having the smallest 
inside diameter allowed by the specifications for a project. Schedule 40 PVC has a smaller 
diameter than all other types of conduit, except Schedule 80 PVC, and its area could be used as 
a default value for most calculations. 

6.5 MOTOR BRANCH CIRCUIT 
NEC Article 430, Motors, Motor Circuits, and Controllers, covers the provisions for motors, 
motor circuits, and controllers. NEC Article 430 includes tables for motor full-load currents, 
which are the minimum values that can be used in determining sizes of motor branch circuits, 
motor feeders, short circuit and overcurrent device sizes and settings, and miscellaneous load 
calculations. Actual nameplate currents must be used if they are larger than the minimum 
values provided in the tables. The values in the tables should be increased for induction motors 
with full-load speeds of less than 1,200 rpm and for motors powered by solid-state drives. In 
addition, a table is provided for determining the maximum rating or setting of motor branch 
circuit, short circuit, and ground fault protective devices. NEC Article 440 contains special 
provisions that apply to the installation of air conditioning and refrigeration equipment and 
should be referred to for these applications.  

The following calculations and the accompanying table are based on the applicable provisions of 
NEC Article 430 and are provided as a guide for performing motor branch circuit and feeder 
calculations and for sizing components for motor branch circuits as part of a design. The typical 
calculations required are demonstrated by the following examples. 

Example 9C-8 
Motor Branch Circuit No. 1 

Conditions: Induction motor is rated 60 hp, 460V, 3-phase, Code letter G, 1,800 rpm continuous, and 
will be powered by a combination motor starter through a conduit system. All equipment and the conduit 
system are located in areas with ambient temperatures of 30°C or less. 
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In NEC Table 430-150, the minimum motor full-load current that must be used for a 60-hp 
motor in the calculations is 77 amps. Using this value, the motor branch circuit and ground fault 
protection device, the branch circuit conductors, and the motor disconnecting means can be 
sized. 

Motor branch circuit and ground fault protection devices are to be sized as outlined in Part IV of 
NEC Article 430, with maximum settings as provided in NEC Table 430-52. Actual settings should 
reflect the recommendation of the manufacturer of the motor control equipment that will be 
provided. 

For example, Table 9C-4 shows General Electric's recommendations. 

Table 9C-4 
General Electric’s Recommendations 

Device Type Rating 
430-52  
Maximum Ratings 

Magnetic-only circuit breaker 100 amps 700% 

Thermal magnetic breaker 125 amps 250% 

Time delay fuses 90 amps 175% 

Branch circuit conductors must be sized in accordance with the requirements of Part B of NEC 
Article 430. NEC paragraph 430-22 requires that conductors supplying a motor must have an 
ampacity not less than 125% of the full-load current of the motor. A special exception is made 
for motors that are operated intermittently for short periods. 

Motor branch circuit ampacity must be equal to or greater than: 

• 77 amps x 1.25 = 96.25 amps 

Conductor size is to be No. 1 AWG copper with XHHW insulation No. 1 AWG = 110 amps at 60°C. 

Note: 60°C ampacity rating of conductors No. 1 AWG and smaller must be used unless the engineer is 
sure that all terminals are rated for use at 75°C. See the UL General Information Directory for more 
details on this subject. 

Motor disconnecting means must be sized in accordance with the requirements of Part H of NEC 
Article 430. The disconnecting means for motor circuits rated 600V, nominal, or less, must have 
an ampere rating of at least 115% of the full-load current rating of the motor. 

Motor disconnecting means must be sized greater than: 

• 77 amps x 1.15 = 88.5 

Disconnect is to be rated 100 amps. 

See Table 9-15 in DSG Chapter 9, Electrical Design, for the conduit and conductor requirements 
for motors typically found in SPU design projects. 

https://www.seattle.gov/documents/Departments/SPU/Engineering/9ElectricalDesignFinalRedacted.pdf
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Example 9C-9 
Motor Branch Circuit No. 2 

Conditions: Determine the size of the feeder conductors and thermal magnetic circuit breaker feeding 
a motor control center that has a total connected motor load of 215A, with the 60-hp motor from 
Example 1 being the largest motor. In addition, there are 45A of continuous load and 65A of 
noncontinuous load. Conductors should be copper with type XHHW insulation installed in an area 
where the ambient temperature is less than 30°C. 

Motor feeder conductors must be sized in accordance with applicable portions of Part B of NEC 
Article 430, and feeder breakers must be sized in accordance with applicable portions of Part E 
of NEC Article 430. 

NEC paragraph 430-24 requires that the conductors supplying the motor control center have an 
ampacity sufficient for the motor load determined in accordance with NEC paragraph 430-24, 
plus the nonmotor load that would be determined in accordance with NEC Article 220. NEC 
paragraph 430-24 requires that the motor load used in this determination be equal to the sum 
of the full-load currents of all the motors in the group plus 25% of the highest rated motor. 

The required ampacity of the conductors should be calculated as follows: 

• Total motor load + 25% of largest motor FLA + noncontinuous load + 125% of continuous 
load  
or  

• 215 + (.25 x 77) + 65 + (1.25 x 45) = 355 amps 

Conductors may be either one 500 kCM or two No. 3/0 AWG per phase (one 500 kCM = 
380 amps, two No. 3/0 = 400 amps). 

NEC paragraphs 430-62 (a) and (b) cover the requirements for sizing the motor feeder short 
circuit and ground fault protection. Paragraph (a) covers the requirements for situations where 
spare capacity for future additions is not wanted or required. Paragraph (b) covers situations 
where spare capacity is to be provided and allows the feeder protective device size or setting to 
be based on the ampacity of the feeder circuit conductors. 

For the above example, a 400-amp device would be selected. For the 400-amp device to be used 
to protect the 500-kCM conductors, NEC paragraph 240-3(b) needs to be used. 

6.6 POWER FACTOR CORRECTION 
CAPACITORS 

Power factor correction capacitors are installed for either of the following reasons: 

• To increase the measured power factor at the serving utility’s meter and reduce the 
power factor penalty being imposed by the utility. Power factor correction for this 
reason cannot be justified unless the serving utility actually has a power factor penalty 
in its rate schedule. 

• To release additional capacity in feeder conductors.  
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For example, a 3-phase load of 200 kW would be equal to 301A at 480V if the power factor were 
80%, but it would be only 254A if the power factor were raised to 95%. This would release 47A 
of capacity for additional loads. 

Article 460 of the NEC covers the installation of capacitors on electric circuits. Those calculations 
needed to determine the size of the capacitor required and the size of conductors required to 
connect the capacitors to their electric power supply are discussed in this section. Following are 
several examples to illustrate the required calculations: 

Example 9C-10 
Power Factor No. 1 

Conditions: A load of 200 kVA exists at 480V with a power factor of 80%. Determine the amount of 
capacitors required to improve the power factor to 95%. 

Power factor = Apparent power (kVA) ÷ Real power (kW) 

By definition, the power factor is the cosine of the angle that exists between the real power and 
apparent power vectors. 

The calculation to determine the amount of capacitance (measured in kVAR) should be made as 
follows: 

kVAR at initial power factor = �(kVA)2 – (kW)2 )   = �(kVA)2 – (kVA X pf)2 

kVAR = �(200kVA)2 – (160kw)2 

kVAR = �40,000 –  25,600 = 120.0 kVAR 

Because the real power of a load is not changed when the power factor is improved, we can use 
the known real power and desired power factor to calculate the new kVAR value in the vector 
triangle: 

kVAR @ 95% power factor = �(kW ÷  pf)2 – (kW)2 

kVAR = �(160 ÷ .95)2 – (160)2 

kVAR =  �(28,366 –  25,600) = 52.6 

Required kVAR for correction = 120 - 52.6 = 67.4 kVAR 

Similar calculations can be made to determine the size of the capacitor required to improve the 
power factor of a single motor to a higher power factor. Tables are available from capacitor 
manufacturers to simplify the selection of these capacitors. Capacitors larger than the maximum 
size recommended by motor manufacturers must not be installed in order to avoid over-
excitation of motor at no-load condition. 

Example 9C-11 
Power Factor Correction Capacitor No. 2 

Conditions: Load is a 60-hp, 1,800-rpm motor operating at 480V, 3-phase. Capacitors rated 15 kVAR 
at 480V are being installed to improve the power factor. Determine the size of the conductor needed to 
meet the requirements of the NEC. 
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NEC paragraph 460-8 contains two criteria that must be met when sizing branch circuit 
conductors to capacitors. First, the ampacity of the conductors must be at least 135% of the 
rated current of the capacitors. Second, if the capacitors are connected to a motor circuit, the 
conductors to the capacitor should have an ampacity not less than one-third of the ampacity of 
the motor branch circuit conductors. 

Capacitor rated amps = 18)3(.48  15 =×÷  

Branch circuit amps = 18 x 1.35 = 24.4 minimum 

Motor branch circuit amps = 1.25 x 77 = 96.25 

Based on the above calculations, you need to use the following: 

No. 1 AWG at 110 amps (60°C ampacity) for motor branch circuit 

Capacitor branch circuit amps as 1/3 of motor branch circuit ampacity = 110/3 = 
36.7 amps 

Therefore, the branch circuit conductors to the capacitor must have an ampacity of 37 amps or 
greater. 

Refer to Industrial Power Systems Handbook by Beeman or Electrical Systems Analysis and 
Design for Industrial Plants by Lazar for additional formulas related to the application of 
capacitors on electrical systems.  

6.7 TRANSFORMER PRIMARY AND 
SECONDARY CONDUCTORS 

Article 450 of the NEC, Transformers and Transformer Vaults, covers the installation of all 
transformers. Article 450 deals with transformers over 600V nominal and transformers 600V, 
nominal, and less. The calculations most often made during an electrical system design are for a 
transformer 600V, nominal, or less with both primary and secondary protection. 

The following calculations and Table 9-14 in DSG Chapter 9, Electrical Design are based on the 
provisions of NEC paragraph 450-3(b)(2). Primary conductors and feeder overcurrent and 
ground fault protection devices (feeder breakers) may be sized up to 250% of rated transformer 
primary current, but the values shown in the table are sized for the next larger device above 
150% of the transformer full-load amps to minimize the possibility of the feeder breaker tripping 
on transformer inrush. The secondary conductors and secondary breaker are sized at the 
standard rating that is nearest to 125% of the calculated secondary full load current. The 
exception at the end of NEC paragraph 450-3(b)(2) allows moving up to the next higher standard 
rating. Following are two examples to show the calculations that are required for 3-phase and 1-
phase transformers. 

Example 9C-12 
Transformer Primary and Secondary Conductors No. 1 

Conditions: Assume a 45-kVA, 3-phase transformer with a 480-V primary and a 208/ 120-V 
secondary. 

https://www.seattle.gov/documents/Departments/SPU/Engineering/9ElectricalDesignFinalRedacted.pdf
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Calculate primary full-load amps: 

45 kVA ÷ ((480 volts x 1.73) ÷1000) = 54.2 amps 

Calculate required feeder breaker and conductor ampacity: 

54.2 amps x 1.5 = 81 amps 

Use a 90-amp breaker and No. 3 AWG copper conductors 

Calculate secondary full-load amps: 

45 kVA ÷ ((208 volts x 1.73) ÷ 1000) = 125.06 amps 

Calculate required secondary breaker size and conductor ampacity at 125% secondary full-load 
amps: 

125.06 amps x 1.25 = 156.3 amps 

Use a 150-amp breaker and No. 1/0 copper conductors1 

Note: This selection limits the continuous load that can be supplied by the transformer to 43.2 kVA 
((80% x 208 volts x 150 amps x 1.73) ÷ 1000). 

The ground conductors for the above circuits must be sized in accordance with NEC 
Tables 250 94 and 250-95. The ground conductor in the feeder to the primary should be sized as 
an equipment ground in accordance with NEC Table 250-95. The grounding electrode conductor 
on the secondary of the transformer must be sized as required by NEC paragraph 250-26 using 
Table 250-94. 

Example 9C-13 
Transformer Primary and Secondary Conductors No. 2 

Conditions: Assume a 25-kVA 1-phase transformer with a 480-V primary and a  
120/240-V secondary. 

Calculate primary full-load amps: 

25 kVA ÷ (480 volts ÷ 1000) = 52.1 amps 

Calculate required feeder breaker size and conductor ampacity: 

52.1 amps x 1.5 = 78.1 amps 

Use an 80-amp breaker and No. 3 AWG copper conductors.1 

Calculate secondary full-load amps: 

25 kVA ÷ (240 volts ÷ 1000) = 104.2 amps 

Calculate required secondary breaker size and conductor ampacity: 

104.2 amps x 1.25 = 130 amps 

Use a 150-amp breaker and No. 1/0 AWG copper conductors.1 

 
1 Conductor sizes for these examples are based on the use of 60°C wire for size 14 through 1 AWG and 75°
C wire for size 1/0 and above. 
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Example 9C-14 
Transformer Primary and Secondary Conductors No. 3 

Condition: Assume a 1500-kVA transformer with a primary over 600V and a 480-V, 3-phase 
secondary. 

Calculate secondary full-load amps: 

1500 kVA / ((480/1000) X 1.73) = 1804 

Calculate required feeder breaker size and conductor ampacity (circuit breaker size based on 
criteria of Table 450-3(a)(1)) : 

1804 X 1.25 = 2255 amps 

The size of the circuit breaker and its trip setting will vary, depending on the type of circuit 
breaker being installed. If a conventional, molded case circuit breaker without solid state trip 
units were being installed, a 2500-amp breaker could be installed because of exception No. 1. It 
would be the next higher standard rating per Article 240-6(a).  

Circuit breakers that have solid state trip elements with replaceable rating plugs and front-of-
breaker adjustments must be set so that the adjustable setting is the next possible value higher 
than the calculated value using the circuit breaker installed. Depending on the frame rating of 
the breaker and the rating plug installed, the resulting trip settings will vary. For example, a 
4000-amp breaker with a 2500-amp rating plug would be acceptable. If a Square D 3000 amp 
frame breaker were installed, a setting of 0.8 would result in a trip setting of 2400 amps. A 
similar trip setting could be achieved with a GE 3200 amp power circuit breaker and a 2400 amp 
rating plug at 1.0. It is important to note that the trip setting of an adjustable breaker may not 
be the same as the standard ratings listed in 240-6(a). 

The conductor will need to be protected by the circuit breaker and installed as required by 
Article 240-3. Assuming that a 2400-amp trip setting is selected, feeder conductors could be 
seven 500 kCM, six 600 kCM, or five 750 kCM per phase.  

6.8 VOLTAGE DROP 

6.8.1 Feeder and Branch Circuits 
Fine-print note No. 4 to NEC paragraph 210-19 states that branch circuit conductors should be 
sized so that voltage drop on the branch circuit does not exceed 3%. Furthermore, it states that 
the total voltage drop on feeder conductors plus branch circuit conductors should not exceed 
5%. Fine-print note No. 2 to NEC paragraph 215-2(b) would allow the voltage drop on a feeder 
to be 3% as long as the total voltage drop to the load is 5% or less. 

Voltage drops are caused by current flowing through an impedance. To calculate steady-state 
voltage drop, the circuit impedance, circuit current, and power factor of that current relative to 
some voltage must be known. Rigorous methods of calculating voltage drop can be very 
involved and complicated; for purposes of ordinary use in designing power circuits for industrial 
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projects, approximate methods are generally satisfactory. IEEE Standard 141-1986 (Red Book) 
gives the approximate formula for voltage drop as: 

θθ  sin  +  cos  = IXIRVd  

where: 

Vd = voltage drop in circuit, line to neutral 

I = current flowing in conductor 

R = line resistance for one conductor in ohms 

X = line reactance for one conductor in ohms 

θ= angle whose cosine is the load power factor 

cosθ  = load real power factor  

sin θ= load reactive power factor 

The voltage drop calculated using this formula must be multiplied by 2 for 1-phase circuits and 
1.73 for 3-phase circuits. 

Calculations using the above formula are not required for most designs because the results 
obtained using published tables give satisfactory results. The following calculations were made 
using Table 13 on page 99 of IEEE Std 141-1986 (Red Book) and the accompanying procedure for 
making the calculations. Similar results can be obtained using published tables and graphs 
available in other reference books, manufacturer's catalogs, and computer programs such as 
DAPPER. 

Example 9C-15 
Feeder and Branch Circuits 

Condition: No. 1 AWG copper conductors feeding a motor rated 60 hp (77A full-load), 3-phase, 460V 
through rigid metal conduit with a circuit length of 520 feet. Assume that the motor power factor is 
85%. 

Calculate voltage drop on a 3-phase circuit from Table 13 of Red Book. The factor for No. 1 AWG 
copper conductors in magnetic conduit at 85% power factor (pf) = 2.55 (need to interpolate 
between .7 and .8 pf) 

Voltage drop = ((520 feet x 77 amps) ÷ 10000) x 2.55 volts = 10.2 volts 

Calculate percent voltage drop by dividing the calculated volts dropped by the system voltage 
and then multiplying by 100:  

(10.2 Vac ÷ 480 volts) x 100 = 2.13% drop 

Factors are provided at the bottom of Table 13 of the Red Book and are to be used to convert 
the calculated voltage drop to 1-phase line-to-line and 1-phase line-to-neutral values. 

6.8.2 Motor Starting 
The calculations required to determine the voltage drop on an electrical system because of 
motor starting are too complex to be covered in this design guide. The IEEE Std 399-1990 (Red 
Book), Industrial Power Systems Handbook by Beeman, and Electrical Systems Analysis and 
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Design for Industrial Plants by Lazar both have very complete sections on this subject. These 
calculations are often done as part of a short circuit analysis using a computer, because they are 
very complex and are based on much of the same information required to do the short circuit 
analysis. These calculations should be made based on the largest motor at each load center to 
determine if the voltage drop on motor starting is of such magnitude that it will cause adverse 
impacts on other equipment in the system. For instance, a 20% voltage dip could cause control 
relays to drop out, since many of these are designed to operate only at voltage levels 15% below 
rated voltage. 

6.9 SHORT CIRCUIT 
The proper selection of protective devices and coordination of their trip settings is based on 
short circuit calculations. The calculations required to complete a detailed short circuit analysis 
are very complex and beyond the scope of this design guide. The Industrial Power Systems 
Handbook by Beeman, Electrical Systems Analysis and Design for Industrial Plants by Lazar, the 
IEEE Std 399-1990, and many other references contain detailed procedures for performing short 
circuit analysis. 

In those situations where an approximate value of short circuit current is needed for preliminary 
design purposes, the following abbreviated method can be used to estimate a very conservative 
value of maximum fault current. This result will exceed the actual fault current, since many small 
impedances are neglected to simplify the calculations. In every situation where this method is 
used, a detailed calculation, either made by hand or using an approved computer program, 
should be made during final design. 

Calculations to determine an approximate value of symmetrical short circuit current in a power 
distribution system are shown in the following example. 

Example 9C-16 
Short Circuit 

Conditions: The load will be served by a 1,500-kVA transformer at 480V 3-phase through a single 
motor control center. The fault current available from the utility on the source side of the transformer is 
unknown, the transformer impedance is assumed to be 5.75% (based on published data), and the 
motor load on the transformer is approximately 75% of the rating of the transformer. Note that the 
standard transformer impedance is valued at +/- 7.5% of nominal. Therefore for a conservative 
calculation the lowest impedance should be used: 

 5.75% x ((100%-7.5%) ÷100) = 5.32% 

The current flowing during a fault at any point in an electrical system is limited by the 
impedance of the circuits and equipment from the source or sources to the point where the 
fault has occurred. For these simplified calculations, we will assume that the only sources are 
the transformer and the motors connected to the system. The motors are connected in parallel 
with the transformer as an impedance with an infinite bus as the source of the fault current. 

The basic formula used to calculate short circuit currents is: 

Short circuit current = Driving Voltage/ Total Impedance (Ohm's law) 
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A point-to-point calculation of short circuit current available at any point can be made using this 
formula. It is the basic formula used in the per-unit method to calculate short circuit current 
values in electric power circuits. The reactance of the utility system must be assumed zero, and 
the following simplification can be made to determine short circuit current let through by a 
transformer: 

Approximate transformer per-unit Z = (%Z)(base kVA) ÷ ((100) (transformer kVA)) 

If we let base kVA = transformer kVA, then: 

per-unit Z of the transformer = %Z / 100 

The basic formula for calculating short circuit current when the per-unit method is used is: 

Is.c. rms sym = base kVA ÷ (1.73 x kV x (per-unit Z of the transformer) 

Because we have let base kVA = transformer kVA and transformer kVA ÷ (1.73 x kV) = 
transformer load current for three phase transformers, we can simplify the above formula to: 

Is.c. rms sym = transformer FLA ÷ (%Z ÷ 100) 

transformer FLA = 1,500 kVA ÷ (.48 x 1.73) or FLA = 1,806.4 amps 

The resulting short circuit current let through by the transformer in our example would be: 

Is.c.rms sym = 1806.4 ÷ (5.32 ÷ 100) 

or  

Is.c. rms sym = 33,955 amps 

The motor contribution to a fault by a single or group of low-voltage induction motors can be 
taken as approximately five times the motor full-load current. This is because the reactance of a 
low-voltage induction motor, including the leads, is approximately 20%. A point-to-point 
calculation made as above for a transformer would result in a multiplier of 5. 

Motor load of 75% of transformer rating was given; therefore, motor FLA would be  
1,806 x .75 = 1,355 amps. 

Is.c. rms sym = 1,355 x 5 = 6775 amps  

The total short circuit current available at the point of the fault would be the total of the 
contribution from the transformer plus the contribution for the motor load or  

total Is.c. rms sym = 33,955 + 6775 

or   

40,730 amps rms sym 

Because neither the serving utility’s source impedance nor the impedances of the 
interconnecting conductors and equipment are included in this calculation, this value can be 
very conservative and must be used carefully.  
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6.10 LIGHTING 
Lighting calculations shall be made using the recommended procedures established by the 
Illuminating Engineering Society and outlined in the IES Lighting Handbook. Two methods are 
available for calculating the lighting levels in a space: the lumen or zonal cavity method and the 
point-by-point method. The zonal cavity method is used to calculate the average foot-candle 
level within the space, and the point-by-point method is used to predict the illumination for a 
specific visual task. The following examples are provided to demonstrate these two calculation 
methods. 

Example 9C-17 
Lighting No 1: Lumen or Zonal Cavity Method 

Conditions: Design a lighting system for a room 15 feet x 25 feet, with an 11-foot ceiling that will be 
used for general office work. The ceiling will be lay-in ceiling tile and the walls will be painted off-white. 
The luminaires will be cleaned regularly and lamps will be group-replaced when the first failures start to 
occur. 

Basic equations: 

Footcandles Total Lumens Striking Area
Area

=
     

Area
LLFCUlamplumenslampssFootcandle ×××

=
)/(  

where: 

CU = coefficient of utilization 

LLF = light loss factor 

 
LLF is made up of a number of factors. The ones to be included in most calculations are lamp 
lumen depreciation (LLD), luminaire dirt depreciation (LDD), and room surface depreciation 
(RSD). 

The CU of a luminaire is calculated by the zonal cavity method and is a measure of how a specific 
luminaire distributes light into a given room. The CU takes into account luminaire efficiency, 
candle-power distribution of the luminaire, room size and shape, mounting height, and surface 
reflectances. The CU for a specific luminaire must be obtained from the manufacturer's catalog. 

To determine the CU for a specific application, several values must be determined: 

• Effective floor cavity reflectance 
• Effective ceiling cavity reflectance 
• Wall reflectance 
• Room cavity ratio (RCR) 

Most CU tables are based on a floor cavity ratio (PFC) of 20, so that figure will be used for this 
example. 
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If the suspension length of the luminaire below the ceiling is zero, which it is for this example, 
the ceiling cavity ratio (PCC) is equal to the ceiling reflectance. If the luminaire is suspended, a 
ceiling cavity ratio must be calculated before the effective ceiling cavity reflectance can be 
determined. Reflectance values for various surfaces are available in the IES Lighting Handbook. 
For this example, 70% will be used. 

The wall reflectance (PW) of materials can be obtained from the IES Lighting Handbook. For this 
example, 70% will be used. 

The RCR must be calculated; it is equal to 2.5 times the area of the walls divided by the area of 
the work plane (Table 9C-5): 

Table 9C-5 
Coefficient of Utilization Zonal Cavity Method 

4-Lamp 
PFC 20        
PCC 80   70   50  
PW 70 50 30 70 50 30 50 30 
RCR CU (divide table values by 100) 

0 76 76 76 74 74 74 70 70 
1 70 68 66 69 66 64 64 62 
2 65 61 57 64 60 56 58 55 
3 60 55 50 59 54 50 52 49 
4 56 49 45 55 49 44 47 43 
5 51 44 39 50 44 39 42 38 
6 48 40 35 46 39 35 38 34 
7 44 36 31 43 36 31 35 30 
8 40 32 27 40 32 27 31 27 
9 37 29 24 36 29 24 28 24 
10 35 26 21 34 26 21 25 21 

Notes 
Test No. 7834 S/MH = 1.3. 
For 2-lamp: multiply above CUs by 1.16. 
For 3-lamp: multiply above CUs by 1.09. 

The work plane height is the level at which most tasks will be performed and is assumed to be 
30 inches for this example. 

 RCR = 
(2.5)(11−2.5)�2 (15+25)�

(15)(25)
 = 4.53 

From the CU table above (see bold numbers), the resultant CU must be interpolated between 
0.55 and 0.50. 

The resultant CU = 0.523. 

Before the calculation to determine the number of lamps required can be performed, several 
decisions must still be made: 

• Type of lamp to be used; this affects lumens per lamp. Assume 3150. 
• Lamps per luminaire; this affects the CU, which was calculated. For this calculation, 

assume four, which is the basis of the CU table. 
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• LLD must be determined. 
• LDD must be determined. 
• RSD must be determined. 
• Foot-candle level desired must be determined. 

Values for LLD, LDD, RSD, and a number of other factors that cause light loss in the space can be 
found in the IES Lighting Handbook. For most calculations dealing with lighting in noncritical 
areas, however, all of these factors can be combined into a single factor, which is often referred 
to as the light loss factor (LLF). For this calculation, an LLF of 0.75 has been assumed. Foot-
candle levels are recommended for a number of applications in the IES Lighting Handbook. The 
recommended level for general office work falls between 50 and 150 foot-candles, depending 
on the level of difficulty of the task. For this calculation, the level required is assumed to be 
100 foot-candles. 

Put all of the numbers into a basic equation and solve it for the number of lamps required: 

 
25 x 15

0.75  0.523  3150  lamps of No. = 100 ×××
 

 No. of lamps = 30.4 or @4 lamps/fixture = 7.6 fixtures 

The next task is to lay out the luminaires in the room to determine if they will fit in a logical 
arrangement. Because the luminaires are being installed in a lay-in ceiling, spacing can only be in 
multiples of 2 feet. For this example, installation of eight luminaires would require two rows of 
four luminaires each. 

Spacing across room = 15 ÷ 2 or about 8 feet 

Between rows and (15-8) ÷ 2 or 3.5 feet between wall and closest luminaire (all dimensions are 
to centerline) 

Spacing length of room = 25 ÷ 4 or 6 feet 

Between luminaires in the row and (25 - (3 x 6)) ÷ 2 or 3.5 feet from the wall to the end 
luminaires 

The foot-candle level that results from the number of luminaires to be installed should then be 
checked: 

Footcandles =  (8 4)  3150  0.523  35
15  25

 =  105.4 footcandles

  

× × × ×
×  

The maximum spacing of the luminaires must also be checked against the mounting height 
above the work plane (S/MH ratio) to determine if it is within the ratio of the luminaire being 
used. 

8 ft spacing ÷ 8.5 ft mounting height = 0.94 

This is well within the 1.3 S/MH ratio of the luminaire used in the example. 

If the luminaires required will not fit the layout, or the foot-candle levels from the layout are not 
acceptable, or the S/MH ratio calculated is not less than that of the luminaire used, then revise 
the layout using a luminaire with a different number of lamps or different characteristics. 
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The foot-candle level calculated tells us the quantity of light that reaches the work surface. 
Other factors that affect visual comfort and ability to see include direct glare, indirect glare, 
reflected glare, and ceiling reflections. In areas where seeing tasks are critical, these must also 
be evaluated. 

See the IES Lighting Handbook and other lighting design and application guides for additional 
information on these subjects. 

Example 9C-18 
Lighting No 2: Point by Point Calculation 

Conditions: Referring to the luminaire layout for example No. 1, calculate the foot-candle level on a 
desk located at point No. 1. For this calculation, use the candlepower distribution table below and 
assume that no light is reflected from the end wall (Table 9C-6). 

Table 9C-6 
Candlepower Distribution Curve 

4-Lamp 
Angle End 45° Cross 

0 3429 3429 3429 

5 3396 3401 3460 

15 3293 3328 3401 

25 3061 3133 3245 

35 2649 2814 2906 

45 1982 2051 2188 

55 1229 1110 1247 

65 681 425 662 

75 314 218 306 

85 94 90 78 

Point-to-point calculations are typically used to determine the foot-candle level, either 
horizontal or vertical, on a specific task 
location from a point source or multiple 
point sources of light. Illumination on the 
task is inversely proportional to the square 
of the distance from the source of 
illumination. 

Basic equations: 

Foot-candles (horizontal plane) 

  Fc h candlepower( ) cos
=

× θ
distance2

Fc v candlepower( ) sin
=

× θ
distance2  
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Foot-candles (vertical plane)  

where: 

Candlepower (CP) is the candlepower of the source in the direction of the ray 

Cos q = height above task (H) ÷ actual distance from task (D) 

Sin q = horizontal distance from task (R) ÷ D 

Using the above data, calculate the vertical foot-candles on the work surface 4 feet horizontal 
from the luminaire: 

 D =  (H  +  R ) =  (8.5  +  4 ) =  9.42 2 2 2  

cos .
.

.

arccos . ) .

θ

θ

= = =

= =

H
D

8 5
9 4

0 904

0 904 25 3( 

 

Use candlepower from table at 25° = 3245: 

Fc(h) =  (3245  0.904)   =  33.2 fc×
9 42.

 

To determine the total foot-candles on the task, the same calculation must be made for each 
luminaire that could contribute to the illumination level. All of the contributions are then 
totaled. 

The contribution from the luminaire on the opposite side of the point will be the same as 
calculated above. The next pair of luminaires is close enough that their contribution must also 
be checked. 

Calculate foot-candles contributed by one luminaire:  

horizontal distance F =  �(42  +  62) = 7.2 ft 

 

27.40763.0 arccos

76.0
14.11
5.8cos

 14.11 = )2.7 + 5.8( = 22

==

==

θ

θ

ftD

 

Use value for candlepower at 45° with respect to the luminaire and interpolate between 35° and 
45° values. 

Use 2420 for candlepower: 

Fc = (2420 x 0.763) ÷ (11.14)2 = 14.88 fc 

The foot-candle level on the task is the sum of the contributions from the four closest 
luminaires: 

Fc total = (33.2 x 2) + (14.88 x 2) = 96.16 fc 



Chapter 9 Electrical Design 
Appendix 9C Design Calculations for Electrical Design 

SPU Design Standards and Guidelines   February 2024 29 

 

The IES Lighting Handbook contains a table to simplify these calculations. If you know the 
mounting height above the work plane and the horizontal distance from the task, the table 
provides (a) the angle to be used to enter the candlepower distribution table and (b) a multiplier 
to be used with the resultant candlepower to calculate foot-candle contribution on the task by 
the luminaire. 

This method is seldom used within a building except where a single workstation may exist within 
a larger space where a lower average level of illumination is required and a higher level is 
required at the workstation. This procedure is often used with outdoor lighting systems to 
determine the lighting levels on parking lots and roadways. It is the basis used by luminaire 
manufacturers in their computer programs for laying out area and roadway lighting systems. 

6.11 GROUNDING 
Grounding system calculations must be made for substation and other areas where step 
potential is a concern. The subject is too complex for the DSG. Grounding system calculations 
must be in accordance with applicable sections of ANSI/IEEE Standard 80. 

6.12 CABLE PULLING TENSION 
Cable pulling involves consideration of the strength of the cable to handle the maximum pulling 
tension required to pull it into place and for it to survive the side-wall tension applied when 
being pulled around a corner. Formulas for making pulling tension calculations can be found in 
most cable manufacturers’ handbooks. American Polywater Corporation has a software package 
that allows the calculations to be completed on a personal computer. 

The maximum pulling tension shall not exceed 0.008 times the circular mil (CM) area when 
pulled with a pulling eye attached to the conductors: 

Tm = 0.008 x n x CM 

Tm = maximum tension, in pounds 

where: 

n = number of conductors in cable 

CM = circular mil area of each conductor 

The maximum tension shall not exceed 1,000 pounds when cables are being pulled with a 
basket grip. In addition, the maximum tension calculated above shall not be exceeded. 

At a bend, the maximum pulling tension should not exceed 300 times the radius of the duct (in 
feet), and the tensions indicated above shall not be exceeded either. The minimum radius in a 
cable run can be calculated by the formula: 

R = T/300  

where: 

T is the worst case maximum tension calculated 
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The pulling tension T in a horizontal duct run can be calculated from the following: 

T = (length of duct [feet]) x (weight of cable [lb per foot]) x (coefficient of friction) 

The coefficient of friction can vary with cable jacket, conduit type, temperature, lubricant, 
number of cables, and pressure of the cable against the conduit wall. Data available from the 
manufacturer of the pulling lubricant being specified must be used in making calculations. 

For pulls through curved sections, the tension required to make the pull will equal the tension 
required for the straight pull at the pulling end, plus a factor times the tension required for the 
straight section at the feeding end. The factor is equal to: efa where e = naperian logarithm base 
2.718, f = coefficient of friction, and a = angle of bend in radians. Because the factor will usually 
exceed 1, the feeding end should be the end having the lowest straight line pulling tension 
requirement. Pulling of cables of different sizes into the same conduit shall be done with 
caution. The maximum pulling tension used must be reduced to make sure that the smaller 
cables are not damaged. 

The designer should review The Power Cable Manual (published by the Southwire Company) or 
Engineering Data (published by The Okonite Company), or a similar cable handbook for 
examples of detailed calculations. For complex calculations where bends exist in cable pulls, the 
designer should use software. American Polywater Corporation Pull-Planner II is a readily 
available software program, but others may be used where available. 

6.13 EQUIPMENT HEAT LOADS 
Heat is generated in electrical equipment because of the electrical losses within the equipment. 
Electrical losses should be estimated and added to the cooling requirements of the space where 
the electrical equipment is installed. Table 55 in Chapter 9 of ANSI/IEEE Std 141 contains a list of 
energy losses for a number of types of electrical equipment. Table 9C-7 shows a brief list of 
energy losses for the equipment found most often in water and wastewater treatment facilities. 

Table 9C-7 
Losses in Electrical Equipment 

Component Percent Energy Loss (full load) 

Medium-voltage switchgear 0.005 - 0.02 

Transformers 0.4 - 1.90 

Medium-voltage starters 0.02 - 0.15 

Low-voltage switchgear 0.13 - 0.34 

Low-voltage motor control 0.01 - 0.40 

Cable 1.00 - 4.00 

Motors  

1-10 hp 14.0 - 35.0 

10-200 hp 6.00 - 12.0 

200-1,500 hp 4.00 - 7.00 

Static variable-speed drives 5.00 - 15.0 
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